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Abstract. Electrochemical reduction of aryl halides generally leads to ex- 
pulsion of halide ion. The product aryl radical is unavoidably further re- 
duced. In contrast, reduction of aryl halides by photoexcited anion radicals 
may be stopped at the aryl radical stage owing to the bimolecular nature of 
electron-transfer reactions. We have tested,this hypothesis by photoindu- 
cing electron-transfer from anthraquinone anion radical to several aryl ha- 
lides. For each halide it was possible to trap the corresponding radical by 
anthracene forming substituted 9-phenylanthracenes. 

The pioneering work on electron-transfer fluorescence quenching by Weller' and the ex- 

ploitation of these reactions in organic synthesis by Arnold' have stimulated much research in 

photochemical electron-transfer within the last decade3. We have recently studied the electron- 

transfer fluorescence quenching of radical cations and anions4 and had previously shown that 

photoexcited anion radicals and dianions were able to transfer electrons to certain aryl hali- 

des whereas the ground state of the same ions were not5. 

Mechanistic and preparative exploitation of such electron-transfer from photoexcited 

anion radicals is of interest since an electronically excited anion radical is a very strong re- 

ductant6. Hence, it is possible to create a very strong reductant in a medium only slightly re- 

ducing. In contrast to the permanent electrode in an electrochemical reduction, the photoexci- 

tation of an anion radical creates a short-lived local electrode in solution. 

In the electrochemical reduction of an aryl halide (AX) further reduction at the electro- 

de or by electron-transfer in solution after the first electron uptake usually cannot be avoi- 

ded since the produced radical (A') is more easily reduced than AX (Scheme 1). In the bimolecu- 

lar photochemical reduction of AX by a photoexcited anion radical (D:)*, further reduction of 

A' is unlikely due to the very low concentration of (Dv)*. Instead, A' may undergo chemical re- 

action or be trapped (Scheme 1). Thus, the low concentrations of electron donors in the photo- 

chemical reduction favours formation of product 2 (Scheme 1). 
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Scheme 1 

Electrochemical Reduction: 

Photochemical Reduction: 

Product 1 

Product 2 

This proposal has been tested in a system originally examined by Wawzonek and Wagen- 

knecht7. They found that electrochemical reduction of 1,2-dibromobenzene (1) gave benzene via - 

the bromobenzene radical and benzyne: 

1 - 

Reduction of the bromobenzene by a second electron uptake could not be avoided. 

We have now examined the bimolecular reduction of 1 by photoexcited anthraquinone anion 

radical (As;)* in the presence of anthracene (An)s. The main product isolated was 9-(2-bromo- 

phenyl)anthracene (2) in addition to small amounts of 9,10-bis(2-bromophenyl)anthracene. The 

products were identified from their spectral properties'. We suggest the following mechanism 

involving initial electron-transfer from excited Aqr to 1 followed by expulsion of bromide. The _ 

resulting bromobenzene radical is trapped by An to give 2: - 

Scheme 2 
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S may be the solvent or Aq'. The mechanism is supported by the following observations: 

a) reaction of electrogenerated An: with 1 gave no bromine-containing coupling products; - 

b) photoexcited An did not react with 1; and c) Aqv in the ground state did not react with 1. - 

The reaction was performed with other aryl halides as electron acceptors. Scheme 3 sum- 

marizes the results. 

Scheme 3 

(Aqv)* + 5 Aq + xe + 

2, Y = Br 

4, Y = CN 

Y Br 

i 

Electron-transfer to 

in Scheme 2. Product 

ir 

5 - 

CN CN 

8r 

6 

5 gave 3, while 6 and 7 both led -- to 4 supporting the mechanism outlined - 

identifications were again based on spectral data". The reaction is pre- 

7 

sumably quite general. Aq: may be replaced by other anion radicals (e.g. 9,10_dicyanoanthrace- 

ne anion radical) and An may be replaced by other radical trapping compounds such as quinox- 

aline. 

In summary we have shown that one-electron reductions of aryl halides may be carried out 
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by means of photoexcited anion radicals. Very recently, Fox has shown that titanium dioxide 

microparticulate electrodes under low light flux may induce single electron-transfer; thus, 

a vicinal diacid was oxidatively decarboxylated to the monoacid in contrast to the conventio- 

nal electrochemical two-electron oxidation to an alkene". Likewise, transfer of electrons 

from l,l-diphenyl ethylenes to photoexcited cation radicals has been demonstrated and it was 

found that the ratio was dependent on the redox potential of the cation radical". 
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